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Route to and from the NMR chaos in diamagnets
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Abstract. The route to and from the chaos via period doubling bifurcations in nuclear spin system with
dipole-dipole interactions is investigated. The transition points are found. It is shown that route from the
chaos proceeds according the Feigenbaum scenario.

PACS. 05.45.Pq Numerical simulations of chaotic models – 76.60.-k Nuclear magnetic resonance and
relaxation

1 Introduction

In our recent paper [1] we have studied the second or-
der Suhl instability [2] in nuclear spin-system (NSS) with
dipole-dipole interactions. The corresponding thresholds
were calculated and the parametrical unstable nonuniform
modes were found for various detuning ranges. This study
was undertaken in order to investigate other than quasi-
equilibrium regime [3,4] of NSS development. The present
article theoretically studies the route to the chaos in men-
tioned spin-system. The article also suggests the experi-
mental conditions for verification of the results obtained.
In case of their good agreement it will be possible to inves-
tigate the different chaotic regimes [5–7] both theoretically
and experimentally in such a medium.

Number of papers are devoted to the subject of onset
of chaos caused by the excitation of parametrical unstable
modes in magnetic materials [8–11]. Detailed studies of
chaotic behavior of spin systems in ferromagnets [12–15],
antiferromagnets [16,17], etc., have been conducted previ-
ously. However, according to my best knowledge the NMR
chaos in NSS with DDI has not yet been considered.

On the other hand the dipolar coupled spin-system is
a very attractive object for theoretical examination due
to the clarity of the character of spin-spin interactions.
The different properties of NSS with DDI, such as its
quasi-nonequilibrium dynamics [3] and onset of nuclear
magnetic ordering [18] caused by NMR saturation, possi-
ble Bose condensation [19], etc., are being studied. Exact
knowledge of dipole-dipole forces simplifies calculation of
various coupling constants, while in electron spin-systems
considered above [8–17] calculation of coupling constants
between spin-wave modes is difficult and consequently
theoretical prediction of excited parametrically unstable
modes is almost impossible. Additionally it should be
mentioned that in connection with the development of dy-
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namical polarization methods [20] it is easy to handle NSS
at low spin temperatures.

2 Nonlinear equations for NSS

Let us consider a NSS consisting of nuclear spins 19F
(I = 1/2) in CaF2 spherical sample. The sample is placed
in a strong static magnetic field H0 and undergoes the
transverse pumping. H0 is applied along the crystallo-
graphic axis z. High initial polarization of NSS and its
further contact with paramagnetic impurities is provided
by the dynamical polarization. The secular part of the
NSS Hamiltonian has the form [21]:

H0 = −
N∑
f

ω0I
z
f −
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fg

εfg(2I
z
f I
z
g − I

+
f I
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g )
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(
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εfg = −
g2(1− 3 cos2 θfg)

4|rf − rg|3
,

where ω0 = gH0 (~ = kB = 1), g is the gyromagnetic
ratio for nuclei, If is the operator of the spin located in
the lattice site f , I±f = Ixf ± iI

y
f , N is the number of spins

in a lattice, ω1 and ω are the amplitude (in frequency
units) and frequency of the pumping magnetic field, rf is
the radius-vector of the spin situated in the site f , θfg is
the angle between rf − rg and z.

The nonsecular terms in Hamiltonian (1) are neglected
because the gap in the spectrum of linear excitations is
assumed to be much larger than the width of the spectrum
zone (in presence of a strong static magnetic field). Thus
the first order Suhl instability [2] does not take place and
the probability of three magnon processes is minute.
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Let us use the momentum presentation
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Thus from (1) we get the equation of motion in the rotat-
ing (with frequency ω) frame:
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where the Weiss field approximation [21] has been used;
∆ = ω0−ω; Mk ≡ 〈Ik〉, 〈· · · 〉 denotes quantum-statistical
averaging; δk0 is Kronecker’s symbol and Mst ' 1/2 is a
static value of Mz

0 in absence of transverse pumping (low
and positive nuclear spin temperatures are considered).
The damping constants γk, γ′k generally differ from each
other. For simplicity one can consider the case when a
relaxation rate caused by the dynamical polarization is
much more than the one caused by the interaction with
thermal excitations of nuclear spins. Then the following
equality takes place [22,23] γk = 1/2γ′k ≡ γ.

Neglecting the nonlinear terms in the set of equations
(2) one obtains the solution in the form of linear spin waves
[4] characterized by the dispersion law ωk = ω0 + εk [24].
The spectrum of linear spin excitations in CaF2 (H0 is
applied along the direction [001]) is localized between the
boundaries (see Ref. [21]) εkI = εmin = −9, 687g2/(4a3)
and εkII = εmax = 5, 352g2/(4a3) (a is the lattice param-
eter), where kI = (0, 0, π/a) and kII = (π/a, π/a, 0).

If the amplitude of pumping field is small, only the
uniform mode is excited and the stationary solution of the
set of equations (2) has the formM+

0 =
(
M−0

)∗
= ω1/(∆−

iγ), M+
k = M−k = 0. If the amplitude of the transverse

pumping field exceeds the critical value the above solution
become unstable and another stationary solution [2,25]

with M+
k =

(
M−k

)∗
6= 0 appears. Let us consider the

resonant case ∆ = 0. Then only the points k = 0 and
kI = (0, 0, π/a) in k space are excited i.e. the mode from
the bottom of the spectrum zone is unstable [1]. Thus
taking into account the identities kI = −kI, 2kI = (0, 0, 0)

one obtains from (2) the following system of equations:
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where the following dimensionalness quantities are intro-
duced τ = γt, mk = Mk/Mst, b = ω1/γ, c = εminMst/γ.
So one gets the system of six nonlinear equations for
the variables Re

(
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)
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)
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)
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)
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3 Results

The calculations are made for the parameter c = 10. The
chaotic regimes have not been found for the parameter c,
which sufficiently differs from the mentioned value.

Computer calculations give the following results: At
b0 = r = 0.317 the parametrical instability occurs and the
solution in the form of fixed point with m+

kI
6= 0 appears;

at b1 = 5.67r the fixed point become unstable and the
auto-oscillations (limit cycle) appears; at b2 = 7.72r the
period doubling and at b∞ = 7.98r the onset of chaos
occurs. These results are represented in Figure 1 as the
time series for longitudinal polarization pl = mz

0 (Figs. 1a,
b, c) and phase portraits for transverse polarization in the
rotating frame pt =

∣∣m+
0

∣∣ versus pl (Figs. 1d, e, f).
The chaos continues till b′∞ = 9.90r, when the sys-

tem returns to the periodical motion. In particular, at
b3 = 10.05r and at b4 = 10.80r the transitions 4T−2T and
2T − 1T take place, respectively. The Analysis of quanti-
ties b′∞, b3 and b4 gives the value for Feigenbaum constant
[26] δ ≈ (b4 − b′∞) / (b3 − b′∞) = 6 instead of the real one
δ = 4.6692.... Further, after b reaches the value b5 = 14.5r
one gets again the solution in the form of fixed point with
m+

kI
= 0. This behavior of NSS is represented in Figure 2.

4T , 2T and 1T period limit cycles are shown as time se-
ries of pl (Figs. 2a, b, c) and phase portraits pl versus pt

(Figs. 2d, e, f).
Let us consider the conditions for experimental veri-

fication. The static magnetic field should have the value
ω0 � ωd ∼ g2/(4a3) = 0.88 × 104 s−1 (ωd is the charac-
teristic scale of DDI). After the initial polarization of NSS
pl ∼ 0.99 is achieved the dynamical polarization should
be fixed at the level providing the relaxation rate for nu-
clear spins γ = |εmin| /20 = 0.42 × 104 s−1 (c = 10).
Then applying transverse resonant (ω = ω0) magnetic
field the parametrical instability should be observed (see
also Ref. [1]) at the amplitude ω1/γ = r = 0.317, i.e. ω1 =
0.13×104 s−1. Further, increasing ω1 one can observe the
periodic motion (with frequency f ≈ 2γ = 0.85×104s−1),
period doubling, onset of the chaos and route from the
chaos at the amplitudes given in the previous paragraphs.
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Fig. 1. The route to the chaos. a), b), c) time series for longitudinal (pl) polarization. d), e), f) phase portraits for pl versus
transverse (pt) polarization. a), d) 1T period limit cycle at b = ω1/γ = 7.65r = 2.42. b), e) 2T period limit cycle at b = 7.85r =
2.49. c), f) chaotic behavior at b = 8.5r = 2.69. Time is scaled by γ.
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Fig. 2. The route from the chaos. a), b), c) pl vs. τ and d), e), f) pl vs. pt. a), d) 4T period limit cycle at b = 10r = 3.17. b),
e) 2T period limit cycle at b = 10.6r = 3.36. c), f) 1T period limit cycle at b = 11r = 3.49. τ is scaled by γ.
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